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Summary

Pylon cross-sectional geometries that are in-

tended to improve the aerodynamics of the propul-

sion system installation were investigated on a

1/17th-scale, low-wing transport model in the Lang-
ley 16-Foot Transonic Tunnel. The basic design phi-

losophy for these pylons was to alleviate flow accel-
eration without introducing severe adverse pressure

gradients near the pylon-wing junction. This result
was achieved by means of a gradually diverging pylon

with the maximum thickness occurring at the wing

trailing edge. The pylon closure occurred aft of the

wing trailing edge. Other pylon cross-sectional ge-
ometries were also tried, but only the pylon design

described above and its hybrid derivative achieved

the desired result. The force data, surface static pres-

sure measurements, and surface flow visualization
data that were obtained support this result. Data

were taken at Mach numbers from 0.50 to 0.80, model

angles of attack from -4 ° to 6°, and pylon toe-in

angles from 0° to 3°.

Introduction

Propulsion integration for transport aircraft has

been a priority area in aerodynamic research and will

continue to play a crucial role in the development
and marketing of new-generation aircraft. Reduc-

tions in installed drag on the order of 1 percent of

total aircraft drag can translate into substantial fi-

nancial savings to airline operators. Some aspects of
propulsion integration that can bc studied in order

to reduce the drag penalty associated with engine in-

stallation are the proximity of the engine nacelle to

the wing, the spanwise location of the engine-pylon

combination, pylon geometry, and the type of instal-
lation (i.e., under the wing, over thc wing, or fuselage

mounted).

This study is part of an ongoing research program

in transport propulsion integration at the NASA

Langley Research Center. The configuration used in

this study is a 1/17th-scale, low-wing transport air-
craft with pylons installed under tile wings. The air-

craft has a supercritical wing section and is designed
for a cruise lift coefficient of 0.55 at a Mach number

of 0.77. Interference effects of flow-through nacelles

under the wings with bypass ratios of 6 and 18 have

been previously investigated oil this model (rcfs. 1, 2,

and 3). Computational fluid dynamic analysis of the

fuselage-wing pylon-nacelle geometry has also been
performed with an Euler code (rcf. 4). The cur-

rent study concentrates on pylon-alone installations.

The eventual goal is to unify the lessons learned
from pylon-alone studies with those from pylon-

nacelle studies and produce a design methodology

for propulsion integration.

The impetus behind the current pylon cross-

sectional geometry study is the added flow accel-

eration and consequent lift loss caused by the in-

stallation of the pylon-nacelle assembly on the wing
lower surface. Pressure contours of the wing lower

surface were computed (ref. 4) with an Euler code

for the complete aircraft, i.e., for the fuselage, wing,

pylon, and nacelle. The results, which were in rea-

sonable agreement with experimental pressure data

(ref. 1), indicated high flow velocities induced on the
wing lower surface by the flow accelerating around

the thickest portion of the pylon. This effect may

have been compounded by the fact that the maxi-
mum thickness of the pylon occurred near the max-

imum thickness of the supercritical wing. These low

pressures resulted in a loss of lift.

Farther aft, adverse pressure gradients were im-

posed on the wing lower surface because the flow

compressed as it traversed the pylon trailing-edge

closure region. These adverse gradients could have
resulted in flow separation in this region with a con-

sequent increase in drag. An example of this type of

flow separation is shown in figure 1 wherc prominent
features are labeled. Here a flow-through nacelle rep-

resenting an engine with a bypass ratio of 6 (refs. 1,

2, and 3) was mounted at a nondimcnsional span-

wise wing station (_) of 0.340 on the model. The

large separation region, indicated by fluorescent oil

pooled at the separation line, demonstrates that im-

provement is needed in the pylon design. (Note that
the dark patch on the forward portion of the inboard

wing lower surface is from a shadow thrown by the

pylon-nacelle assembly.)

These problems arc believed to be avoidable with
a flat-sided pylon of increasing thickness whose clo-

sure is moved aft of the wing trailing edge while

maintaining the pylon maximum thickness. In order
to minimize the adverse effects, the pylon should bc

widest at the wing trailing edge (ref. 5). This type of

pylon is called a compression pylon. The compression

pylon is expected to have higher skin-friction drag
than a conventional partial-chord pylon t)ecause of

its larger wetted area. However, at cruise this effect

can bc more than offset by lower interference drag.

The compression pylon design can be further re-

fined by varying the toe-in angle and also by tailor-

ing the outboard side of the pylon differently from
the inboard side to accommodate any cross flow aris-

ing from wing sweep and fuselage blockage. In this

paper, the latter geometry is referred to as a hybrid

pylon. The earlier pylon-nacelle studies (ref. 3) have



shownthat thechangesin pylontoe-inangle,though
forthemostpart minimallyeffective,cansometimes
resultin lowerinstallationdrag.

Thecurrentinvestigationwasconductedto com-
parethe installationeffectof variouspylongeome-
tries versusthe wing without pylons(cleanwing)
in termsof the distributionsof wingsurfacepres-
surecoefficient,the amountof flow separationat
the pylon-wingjunction,andthe aerodynamicforce
characteristicsof thetransportmodel.

Symbols and Abbreviations

BL buttline,in.
b wingspan, in.

C L lift coefficient, Lift/ qoc S

Cp static pressure coefficient,
(p -

c local wing chord, in.

Cn section normal-force coefficient

cI local pylon chord (defined to

be 0.95c), in.

mean aerodynamic chord, in.

fuselage station, in.

Mach number

static pressure, lb/in2

dynamic pressure, lb/in 2

S wing reference area, in 2

WL waterline, in.

WRP wing reference plane

x local pylon ordinate, in.

y local pylon coordinate, in.

c_ angle of attack, deg

7? nondimensional spanwise wing
station

FS

M

P

q

Subscripts:

des

OO

design point

free-stream condition

Apparatus and Procedure

Wind Tunnel and Model Support

The present investigation was conducted in the

Langley 16-Foot Transonic Tunnel. This facility is a

single-return, continuous-flow atmospheric wind tun-

nel with a test section of octagonal cross section
and a throat cross-sectional area of 199.15 ft 2. The

31-ft-long test section (the maximum length at sub-

sonic speeds) has slots located at the corners of the

octagon that vent the test section to a surround-

ing plenum to provide transonic capability. The

test section airspeed is continuously adjustable be-
tween Mach numbers of 0.20 and 1.30 with an accu-

racy of -t-0.005. The wall divergence in the test sec-

tion is adjusted as a function of the airstream dew

point and Mach number to minimize any longitudi-

nal static pressure gradients in the test section. No
wall divergence is necessary below a Mach number

of 0.825. The model was sting mounted and held

near the test section centerline at all angles of at-

tack by the support-system arrangement. Further
information on the wind tunnel and model support

equipment can be found in references 6 and 7.

Model

The sketch in figure 2(a), which shows the basic

research transport model in the clean wing configura-

tion (without pylons), includes the overall dimensions

and important geometric parameters. The photo-
graph in figure 2(b) shows a front view of the clean

wing model. This model is a 1/17th-scale represen-

tation of a 150-passenger, twin-engine transport de-
signed to cruise at Mcc = 0.77 and CL = 0.55. Fhr-

ther information about the geometry of the model,

in addition to that given below, may bc found in
reference 1.

Fuselage. The fuselage is 80 in. long, has a
maximum diameter of 9.0 in., and is comprised of an

ellipsoidal nose profile with circular cross sections, a

cylindrical midsection, and an afterbody of elliptical

cross sections with vertical major axes.

Wing. The planform geometry of the wing (see
fig. 2(c)) has a span of 79.668 in., an aspect ratio

of 10.795, a taper ratio of 0.275, and a quarter-chord

sweep of 21 ° . Tile quarter-chord dihedral of tile

wing reference trapezoid is 5.78 °. Airfoil ordinates

and design information for the supercritical wing and
wing-fllselage fairing can bc found in reference 1.

Pylons. Four different pylon cross sections wcrc

studied. These wcrc the NACA 0012, the NASA

SC(2)-0012, the compression, and tile hybrid cross
sections. The pylon cross sections are shown in

sketch A. The NASA SC(2)-0012 airfoil is designed

specifically for transonic flow regimes in an attempt
to improve the performance of tile conventional

12-percent-thick airfoil (ref. 8). The two 0012 py-

lons were nearly filll wing-chord pylons. As shown



in figure3(a),all pylonsweresetbackfromthewing
leadingedgeby5percentofthelocalwingchord.For
all pylons,themaximumthicknesswasdefinedrela-
tiveto thelocalNACA0012pylonchord.Thephoto-
graphsin figures3(b)and3(c)showfront andrear
views,respectively,of the modelwith the compres-
sionpylonsinstalled,whereasthephotographin fig-
ure3(d)showsaclose-upviewfrombelowthesame
pylons.

NACA0012

werelocatedon theleft wing.Thespanwiselocation
of eachorificerowis shownin figure4. Theorifices
onthelowersurfacewereconcentratedin thevicinity
of the pyloninstallationlocationsof r/= 0.340 and
0.400 so that local flow phenomena around the py-

lons could be examined in greater detail. All pressure

measurements on the wing were made by electroni-

cally scanning pressure modules mounted inside the

hollow, removable nose section of the model. Each
module contained 32 individual pressure transducers

capable of transmitting data simultaneously. Fur-
ther details of this instrumentation can be found in

reference 1. The pylons were not instrumented.

C NASA SC(2)-0012

C- Compression "_

Hybrid

Sketch A

The compression and the hybrid pylons extended

beyond the wing trailing edge but had approximately
the same maximum dimensional thickness as the

NACA 0012 pylons. The hybrid pylon, with an

inboard compression side and an outboard modified
NACA 0012 side, was expected (ref. 9) to provide a

compromise wing pressure distribution closest to the

clean wing pressure distribution. Table I lists the

coordinates of the four pylon cross sections.

Two sets of pylons were constructed for each cross

section. One set of pylon pairs was sized with re-

spect to the local wing chord for installation at tile

r/= 0.340 location. The other set was sized for in-
stallation at tile r/= 0.400 location. The outboard

location (71 = 0.400) was a possible alternative loca-

tion for a higher bypass ratio engine that nfight not
have sufficient ground clearance at 71= 0.340. The

photographs of figure 3 show the pylons at rI = 0.340.

The pylons were tested without tile nacelles attached.

Instrumentation

Forces and moments were obtained on the com-

pletely metric model from an internal, six-component
strain gauge balance. Thc longitudinal location of

the balance moment center was slightly aft of the

quarter-chord of the wing mean aerodynamic chord.

(See fig. 2(a).) The model angle of attack was mea-

sured by using an accclerometer mounted in the
model nose. More than 300 surface pressure orifices

Tests

The tests were conducted over a Mach number

range from 0.50 to 0.80. This corresponds to a
Reynolds number range from 2.0 x 106 to 2.7 x 106

based on the wing mean aerodynamic chord. The

angle-of-attack range was from -4 ° to 6°. Aero-

dynamic force and pressure data were obtained for

the clean wing model shown in figure 2 and for
the model with the pylon configurations installed.

Four different pylon toe-in angles (nominally 0 °, 1°,

2 °, and 3°) were investigated for each pylon tested.

Toe-out angles were not investigated. Transition

grit strips were located on the model based on the
observations from oil flow studies on the clean wing

(ref. 1). Locations for the transition grit on the
wing, fuselage, and pylon are given in figures 5(a),

5(b), and 5(c), respectively. A fluorescent oil flow

technique was employed to obtain flow visualization
on tile wing in the vicinity of tile pylons to determine

the extent of flow separation in this region.

Data Reduction

Standard aerodynamic force and moment coeffi-

cients were computed using the methods and equa-
tions of reference 10. The trapezoidal planh)rm ar-

eas of the wing and mean aerodynamic chord were
used ms the reference area and length, respectively.

Resulting model force and moment coefficients were

referred to the stability axis system with the moment
reference center located at the quarter-chord of the

wing mean aerodynamic chord (FS 41.902).

The model angle of attack was computed by

correcting the values from the onboard accelerom-

eter for wind tunnel upflow, which was determined
from clean wing tests of upright and inverted mod-

els. Sting-cavity and fuselagc-l)ase pressure measure-
ments were used to correct the axial-force data to the

condition of free-stream static pressure acting on the

fllselage base and in the sting cavity.



Results and Discussion
Theeffectsof the pyloninstallationswill bedis-

cussedin termsof thedistributionsofthewingpres-
surecoefficientsthat weremeasuredaswellasthe
lift characteristicsofthevariousconfigurations.Drag
datawill notbeincludedin thediscussionbecauseits
accuracyis questionable.Severalflowvisualization
photographswill beconsideredaswell.

Effect of Pylons Installed at 7/= 0.340
Theeffectof toe-inangleonthelift characteristics

of thefourpylonsinstalledat r/-- 0.340 is shown in
figure 6. The variation in pylon toe-in angle had a

small effect on lift for all the pylon installations over

the full range of test Mach numbers. Figure 7 further

illustrates the minimal effect of pylon toe-in angle
for data near ]_/oc = 0.77 and CL ----0.55, the wing

design condition. Here the lift curves are presented

on a more precise scale near the cruise condition. The

smallest divisions on the lift and angle-of-attack axes

represent the accuracy of the lift and angle-of-attack
measurements, respectively; i.e., ACL = 4-0.01 and

Ac_ = +0.01 °. Differences in measurements greater

than two axis divisions are significant. This criterion
leads to the conclusion that all toe-in angles tested

for each pylon installation produce essentially the

same level of lift for a given angle of attack. The

remainder of the discussion will consider only the
pylon cross section without regard to the pylon toe-in

angle.

Figure 8 compares the lift characteristics at

Moc = 0.77 for each of the pylons installed at

7/= 0.340 and for the clean wing. Figure 9, which
shows data near the design lift point for the same

Mach number on a larger scale, indicates that the

compression pylon installation results in the lowest

lift loss relative to the clean wing. The hybrid and

NASA SC(2)-0012 pylon installations perform essen-

tially the same, whereas the NACA 0012 configu-
ration results in the greatest loss in lift of all the

configurations tested.

Figures 10 through 13 show the surface static

pressure coefficients at tile clean wing design con-

dition for each of the pylon installations. The clean
wing pressure coefficients are represented by the dot-

ted lines. (No symbols arc shown for the clean wing
data for clarity.) The pressure data for the upper

surface of the wing show that the compression py-

lon installation has only a slight effect on the upper

surface flow (fig. 12(a)). For the compression pylon

installation, the local velocity increases, as indicated

by a higher negative Cp peak, for the first 20 percent
of the wing chord at 7/= 0.340. The compression py-
lon installation also has the lowest effect on the static

pressure distribution of the wing lower surface, as can

be seen in figures 10(b) through 13(b).

The NACA 0012 pylon installation (fig. 10(a))
had the greatest influence on the surface static pres-

sures on the wing upper surface because an angle-of-
attack increase of about 0.22 ° relative to the clean

wing was required with the NACA 0012 pylons in-

stalled to achieve the design lift condition. This
angle-of-attack increase was necessitated by the ac-
celeration of the lower surface flow as indicated in

figure 10(b), which shows that the strongest effect of
the NACA 0012 pylon installation was measured at

the 7/= 0.310 location as indicated by the increased

negative Cp coefficients. More negative pressure co-
efficients here indicate a local lift loss which had to

be countered by an increase in model angle of at-
tack to achieve the desired lift. An adverse effect

of this angle-of-attack increase is seen in the pres-
sure coefficient distribution on the upper surface at

7] = 0.550 (fig. 10(a)), where evidence is seen of a

shock occurring at about 60 percent of the local wing
chord.

The levels of pressure coefficient distributions

(Cp) for the NASA SC(2)-0012 and hybrid pylon in-
stallations fall between the levels for the compres-

sion and NACA 00i2 pylon installations. The upper

surface Cp levels for the NASA SC(2)-0012 installa-
tion were slightly more negative than those for the
hybrid pylon installation over much of the wing sur-

face. This change is largely a result of the fact that

the data for the NASA SC(2)-0012 installation are

for a lift coefficient of 0.56, whereas the data for the

hybrid installation are for a lift coefficient of 0.54.
The lower surface Cp distributions are less sensitive
to small variations in model lift coefficient, which al-

lows a meaningful comparison to be made here. Re-

call that figure 9 showed that the NASA SC(2)-0012

and hybrid pylon installations resulted in essentially
the same lift performance at the cruise condition.

Even though the overall effect of these two instal-

lations was similar, figures ll(b) and 13(b) indicate

that the local effects of the individual pylons were

noticeably different. For the NASA SC(2)-0012 py-
lon installation, the greatest disturbance to the flow

is sccn at the 7/= 0.310 location. A relatively sharp

negative Cp peak occurs at about 35 percent of the

local wing chord, and separation may be indicated by

the flattening of the Cp distribution between 50 and
75 percent of the local wing chord. Measurements

for the hybrid pylon installation do not show a se-

vere negative pressure peak or any indication of flow

separation, but as can be seen in figure 13(b), the hy-
brid pylon installation did cause a slight shift toward



morenegativepressurecoefficientsonthewinglower
surfacebetween7/= 0.277and0.428.

Figures14through17showthe Cp distributions
on the wing lower surface at T/= 0.310 and 0.375. For

a free-stream Mach number of 0.50 (fig. 14), the Cp
distributions for the pylon installations do not reflect

any severe effects such as the formation of shocks or
separation. At this Mach number, the most notable

effects on the flow are the more negative pressures

induced by the NACA 0012 and NASA SC(2)-0012

pylon installations at r/= 0.310. As Mach number

is increased, the effects of the various pylon installa-
tions become more distinct. Figure 16(a) shows that

at Mc_ = 0.77 and r1 = 0.310, the NACA 0012 py-

lon induced the sharpest gradients on the wing, and

both the NACA 0012 and NASA SC(2)-0012 pylons

may have caused separation as indicated by the lev-

eling off of the Cp distribution between about 60 and
80 percent of the local wing chord. At Mcc = 0.80

(fig. 17), similar effects occur again at rl = 0.310 but
to a greater extent. On the outboard side of the pylon

(_ = 0.375), the compression pylon had the smallest
effect on the wing surface pressures for x/c < 0.5. At

Mach numbers up to 0.77, the outboard pressures for

the compression pylon installation are virtually the
same as those for the clean wing. Beyond the peak

value, the Cp distributions for the NACA 0012 py-
lons are closest to those of the clean wing, which

suggests that the outboard sides of the compres-

sion and hybrid pylons can bc modified for optimum

performance.

The pressure data indicated various flow features

including separation. Flow visualization was used to

determine whether these regions of separation wcrc

actually present. Figure 18 shows photographs of flu-
orescent oil flow visualization on the wing lower sur-
face for Mm = 0.50 and CL = 0.55. In figure 18(a)

the lower surface flow on the clean wing is shown to

be fully attached at a = 1.5 °. The transition grit is
indicated in the photograph by tile white line run-

ning from root to tip. Figures 18(b) and 18(c) show
the effects of the NASA SC(2)-0012 and compression

pylons oi1 the flow field of the wing lower surface at
= 1.8 ° and c, = 1.6 °, respectively. A comparison of

these two figures shows that the NASA SC(2)-0012

pylon installation perturbed the local flow more than
the compression pylon installation. The separation

region (not to be confused with the shadow thrown

from the pylon on the inboard part of the wing) to-
ward the aft end of the pylon near the pylon-wing

junction is larger for the NASA SC(2)-0012 pylon
than for the compression pylon.

Figure 19 shows photographs of flow visualiza-

tion for the wing upper surface for Moc = 0.77 and

C L = 0.55. Flow separation occurs near the trail-

ing edge of the wing from the wing root out to

about the 40-percent wing-semispan location. The

different pylons installed at r/= 0.340 produced only

slightly different effects on the wing upper surface
flow. Flow visualization photographs for the wing

lower surface at M_ = 0.77 are shown in figure 20,

where figure 20(b) clearly shows large regions of flow

separation on both the inboard and outboard sides

of the NASA SC(2)-0012 pylon. A comparison of

figure 20(b) with the flow visualization shown in fig-

ure 20(c) for the compression pylon installation re-
veals why the compression pylon has a better lift per-

formance. Figure 20(c) shows that the compression

pylon has a relatively small effect on the nature of

the flow on the wing lower surface. The pressure
distributions of the wing lower surface presented ear-

lier indicate that the NACA 0012 and hybrid pylons

perturb the wing flow in a manner similar to that

of the NASA SC(2)-0012 and compression pylons,

respectively. The NACA 0012 and hybrid pylons

are expected to result in wing lower surface separa-
tions similar to those for the NASA SC(2)-0012 and

compression pylons, respectively.

Figure 21 shows how the wing loading varied

along the span for each of the pylons installed at

7/= 0.340 and for the clean wing. The data for the

compression pylon installation are nearly the same
as the data for the clean wing configuration. A

slight loss in section normal force for the compression

pylon installation is evident at the rI = 0.400 station.

The other pylon installations caused a much larger
loss in section lift at r/= 0.400. As a consequence

of the higher losses near the pylon location, the

model was required to be at a higher angle of attack
to maintain the desired overall lift. This increase

in angle of attack caused the outboard portion of

the wing to be more heavily loaded. This load

increase implies a structural weight penalty and may
introduce outboard shocks on the wing upper surface

that can result in an increase in model drag.

Effect of Pylons Installed at rI = 0.400

In addition to the pylons installed at 7/= 0.340,
data were obtained for the pylons installed at

r1 = 0.400. Figures 22 through 32 contain data rela-

tive to the pylons installed at r1 = 0.400. Figure 22
shows the lift characteristics of the clean wing and

the pylon-installed configurations for M_c = 0.77.
The data indicate that the NACA 0012 and NASA

SC(2)-0012 pylon installations reduced the lift-curve

slope relative to the clean wing. The compression and
hybrid pylon installations reduce the level of lift for

a given angle of attack but inaintain nearly the same

5



lift-curveslopeasthe cleanwing. (Thiseffectwas
alsoobservedforthe r/= 0.340 installations (fig. 8).)
Figure 23 shows the lift data for the same condition

as that in figure 22, but on a more precise scale. The

compression pylon installation at r/= 0.400 had the
least effect on the angle of attack required to achieve

a given level of lift, as was also the case at r/-- 0.340.

Figures 24 through 27 depict the static pressure

coefficients on the wing surface at the cruise condi-

tion for the four pylons installed at 7/= 0.400. The

dotted lines in the figures represent the clean wing
data. Flow features similar to those found in fig-

ures 10 through 14 for r/= 0.340 can be seen in the

data for the 7/= 0.400 installations as well. In partic-

ular, regions of separation apparently exist on the in-
board sides of tile NASA SC(2)-0012 and NACA 0012

pylons. Additionally, the static pressure distribution

associated with the compression pylon installation is

nearest the clean wing pressure distribution, which

is in agreement with the lift data shown in figures 22
and 23.

Figures 28 through 31 show the static pressure co-

efficients oil the lower surface of the wing for the mea-
surement locations nearest the inboard and outboard

sides of the pylon. In general, the compression pylon

installation caused the smallest departure from the

clean wing pressure levels from M_c = 0.74 (fig. 29)
to Moc = 0.80 (fig. 31). The NASA SC(2)-0012 and

NACA 0012 pylons (which affected the lift charac-

teristics of the model the most) caused greater flow"
(tisturbances than either the compression or hyl)rid

pylons. The NASA SC(2)-0012 pylon appeared to
cause the greatest extent of separation on the wing
lower surface at r/= 0.375, whereas the NACA 0012

pylon induced higher local velocities near the pylon

for free-stream Mach numbers above 0.50, ms indi-

cated by the more negative pressure coefficients near

x/c = 0.30. The wing loadings for all the pylon in-

stallations (r/= 0.400) and for the clean wing are

shown in figure 32. Once again, as was the cause for

the 7/= 0.340 pylon location, the compression t)ylon
configuration affected the wing loading the least, of

the four pylon installations. The hyt)rid pylon did

slightly better than either the NASA SC(2)-0012 py-

lon or the NACA 0012 pylon in terms of matching
the clean wing loading.

Concluding Remarks

Pylon cross sections were investigate d on a

1/17th-scale, low-wing transport model in the Lang-

ley 16-Foot Transonic qSmnel. A compression pylon

an(t its hyl)ri<t derivative seem promising from the
standpoint of better aerodynamic integration for the

following reasons:

. Flow acceleration can be alleviated without intro-

ducing severe adverse pressure gradients near the
pylon-wing junction. The flow acceleration can

be reduced by means of a gradually diverging py-
lon with maximum thickness at the wing trailing

edge. The pylon trailing-edge closure (flow com-

pression region) occurs aft of the wing trailing
edge.

, The resulting wing pressure distributions are close

to those for the clean wing, which implies a small

loss of lift and also minimal flow separation at
the pylon-wing junction. Flow visualization data

confirm the minimal separation.

3. The trends are sinfilar for two different pylon

locations on the wing.

. Changes in pylon geometry ("airfoil shape") have
more influence on lift coefficient and pressure

coefficient than minor variations in pylon toe-in

angle ("airfoil angle of attack").

Although this study of generic pylon cross

sections has indicated some useful performance

trends, the following important issues should be
resolved:

. The compression pylon, with its bulkier aft end

and thinner forward end, poses a structural chal-

lenge for conventionally mounted forward engines.

This problem is not as crucial for the hybrid
pylon because it has a more uniform thickness
distribution.

. The nature and extent of the separated flow at
the pylon-wing junction are crucial determinants

of installation drag. However, high Reynolds
number studies are needed because this kind of

pressure-gradient-induced separation can 1)e quite
different at fifll-scale Reynolds numbers.

. The compression pylon and hybrid pylon con-
cepts should t)e tested with a nacelle attached

because the presence of a nacelle can, depending

on proximity, fllrther compound or alleviate flow"
accelerations and gradients.

, For nacelles very close to the wing and for very

high t)ypass ratio nacelles, the effects of fan and
core exhausts should be considered.

, Three-dimensional inverse-design methods should

bc used to design pylon and fillet geometry from

prescribed pressure distributions.



6. A pylon geometry might only be good at a single

design point, whereas practical implementation

can require geometry optimization for mult;point

design.

NASA Langley Research Center

Hampton, VA 23681-0001

April 12, 1993
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(a) NACA 0012 pylon

Outboard/Inboard

• /¢ y/¢
0.00000 0.00000

.00154 .00688

.00616 .01350

.01382 .01985

.02447 .02589

.03806 .03158

.05450 .03687

.07368 .04171

.09549 .04605

.11980 .04985

.14645 .05308

.17528 .05571

.20611 .05771

.23875 .05909

.27300 .05985

.30866 .06000

.34549 .05957

.38328 .05861

.42178 .05715

.46077 .05524

.50000 .05294

.53923 .05030

.57822 .04738

.61672 .04424

.65451 .04092

.69134 .03748

.72700 .03396

.76125 .03042

.79389 .02691

.82472 .02345

.85355 .02011

.88020 .01691

.90451 .01391
.92632 .01115

.94550 .00866

.96194 .00648

.97553 .00464

.98618 .00318

.99384 .00212

.99846 .00148
1.00000 .00126

Table I. Coordinates of the Four Pylon Cross Sections

(b) NASA SC(2)-0012 pylon

Outboard/Inboard Outboard _Inboard Outboard 'Inboard

x/c' y/c' x/c' y/c' x/c ] y/c _

0.33000

.34000

.35000

.36000

.37000

.38000

.39000

.40000

.41000

.42000

.43000

.44000

.45000

.46000

.47000

.48000

.49000

.50000

.51000

.52000

.53000

.54000

.55000

.56000

.57000

.58000

.59000

.60000

.61000

.62000

.63000

.64000
.65000

.66000

0.05950

.05960

.05970

.05980

.06000

.06000

.06000

.06000

.06000

.05980

.05970

.05960

.05950

.05920

.05900

.05880

.05840

.05800

.05770

.05730

.05680

.05640

.05580

.05520

.05460

.05380

.05310

.05230

.05130

.05040

.04930

.04820

.04700

.04580

0.00000

.00910

.01390

.01860

.02480

.02910

.03240

.03500

.0373O

.03930

.04110

.04280

.04420

.04560

.04680

.04800

.04900

.05000

.05100

.O5180

.05260

.05340

.05410

.05470

.05530

.05590

.05640

.05680

.05730

.05770

.O58O0

.05840

.05880

.05900

.05920

0.67000

.68000

.69000

.70000

.71000

.72000

.73000

.74000

.75000

.76000

.77000

.78000

.79000

.80000

.81OO0

.82000

.83000

.84000

.85000

.86000

.87000

.88000

.89000

.90000

.91000

.92000

.93000

.94000

.95000

.96000

.97000

.98000

.99000

1.00000 I

0.00000

.00200

.00500

.01000

.02000

.03000

.04000

.05000

.06000

.07000

.08000

.09000

.10000

.ll000

.12000

.13000

.14000

.15000

.16000

.17000

.18OOO

.1900O

.20000

.21000

.22000

.23000

.24000

.25000

.26000

.27000

.28000

.29000

.30000

.31000

.32000

0.04450

.04330

.04200

.04080

.03950

.03820

.03700

.03570

.03450

.03320

.03190

.03070

.02940

.02820

.02690

.02560

.02440

.02310

.02190

.02060
.01930

.O1810

.01680

.01560

.01430

.O1300

.01180

.01050

.00930

.00800

.00670

.00550

.00420

.O0300
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(c) Compressionpylon

Outboard/Inboard

x/c' y/c'

0.00000 0.00000

.00130 .00670

.00500 .01170

.01090 .01520

.01880 .01740

.02830 .01870

.03940 .01950

.05000 .02000

.20570 .02660

.37190 .03360

.53820 .04060

.70440 .04760

.87070 .05460

.91150 .05620

.95220 .05770

.99300 .05850
1.03380 .05780

1.07450 .05410
1.11530 .04590

1.15610 .03320

1.18390 .02340

1.21170 .01360
1.23940 .00370

1.25000 .00000

Table I. Concluded

(d) Hybrid pylon

Outboard Inboard

x/c' y/c'x/c' y/#

0.00000 0.00000

.00250 .01138

.01250 .02325

.03750 .03638

.05205 .04105

.07500 .04663

.12155 .05478

.19196 .06295

.26265 .06839

.33345 .07196

.40430 .07412

.47519 .07500

.54607 .07454

.61695 .07282

.68778 .06974

.75848 .06453

.82893 .05674

.89926 .04784

.96960 .03903

1.03995 .03019
1.11028 .02129

1.18063 .01245

1.25000 .00000

0.00000

.00130

.00500

.01090

.01880

.0283O

.03940

.04731

.06244

.19534

.32821

.46109

.59396

.72684

.85971

.99265
1.05014

1.09025

1.12034
1.15042

1.20056

1.24370

1.25000

0.00000

-.00670
-.01170

-.O1520

-.01740

-.0187O

-.01950
-.01990

-.02101

-.02623

-.03176

-.03736
-.04295

-.O4865

-.05416

-.05753
-.05746

-.05094

-.04434
-.03497

-.01749

-.00220

.00000

9
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0.05c

] Rotation center at
wing leading edge

3 ° maximum

t°e-in angle ---_ !

NACA 0012 and Compression

L, _ .[ !
_]_ 1.25¢'

(a) Sketch showing geometry of pylons. All pylons were set back from the wing leading edge by 5 percent of

the local wing chord.

Figure 3. Details of pylon installation.
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39.834

0.1-in. band of
No. 120 silicon carbide grit

except where noted

19.917

15.934

A
0.1-in.
band of

!.0 No. 100
silicon
carbide

11.638

5.725

Figure 5.

Upper surface

BL
Lge centerline

(a) Wing locations.

Location of boundary-layer transition strips on model.

Lower surface

Linear dimensions are given in inches.
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I

0.1_

_ ___No. 100 silicon carbide grit

(b) Fuselage nose location.

FS
19.500

[|l i , i |l

---¢" //_ ().50 in.

(c) Typical location of pylon transition grit.

Figure 5. Concluded.
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3

CL

Corn _ression

/

-.2 I

CL

.8 NASA SC t-0012 H' ,brid I

.6

.4

-.2
-4 -2 0 2 4 -4 -2 0 2 4

Figure 6,

o_,deg a, deg

(a) Af_ = 0.50.

Effect of pylon toe-in angle oil lift characteristics for pylons installed at q = 0.340.
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/
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a, deg

(b) M_ = 0.74.

a, deg

Figur(, 6. Conlimlod.
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CL

CL

O

[]

<>

A

Toe-in

angle, deg

0

1

2

3

•8 NACA 0012 Com)ression

•8 NASA SCt -0012 H, 'brid

.6

.2 /_,
0 "

-.2

-4 -2

j

¢-

0 2 4 -4 -2 0 2

a, deg

(d) fix = 0,80.

a, deg

Figure 6. Concluded.
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eL

.60

.50

.6O

O

[]

<>

A

Toe-in

angle, deg

0

1

2

3

eL .55

.50

.60

CL .55

.5O

.60

eL .55

iiiiiiiiiiii!i iiiiiliiii!!iilJli!iiiiiiiiii  

.6 .7 .8 .9 1.0 1.1 1.9. 1.13 1.4 1.5

a, deg

Figure 7. Effect of pylon toe-in angle on lift characteristics near the design point (M_ = 0.77 and CL = 0.55)
for pylons installed at 77--- 0.340.
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cL

.8

.6

.4

.2

0

/
_ o Clean wing[] NACA 0012

O NASA SC(2)-0012

J _ Compression
_- Hybrid

-.2

-4 -2 0 2 4

Figure 8.

a, deg

Comparison of lift characteristics for clean wing and for pylons installed at rl -- 0.340 for M_c =- 0.77.

eL

o Clean wing

D NACA 0012

O NASA SC(2)-0012

A Compression

_" Hybrid

•55 I [ ..........!iJ ,
.50 •__ L ..............

•5 .6 .7 .8 .9 1.0 1.1 1.2 1.3

a, deg

Figure 9. Comparison of lift characteristics for clean wing and for pylons installed at 77= 0.340 for M_c = 0.77.
Detail is near C L = 0.55.
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-1.00

-.75

c.

-.50

-.25

0

.25

.50

.75

1.00

J

o Clean wing
[] NACA 0012

<> NASA SC(2)-0012

A Compression

_- Hybrid

0 .2 .4 .6 .8 1.0

x/c

(a) _ = 0.310.

Figure 14. Comparison of static pressure coefficients on wing lower surface of various configurations for
Moo = 0.50 and CL _ 0.55 with pylons installed at _] = 0.340.
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-1.00

-.75

-.50

tY
.50

.75 Compression
tx Hybrid

0 .2 .4 .6 .8
1.00

1.0

x/c

(b) ,_= o.375.

Figure 14. Concluded.
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-.75

%

-.50

-.25

0

.25 I1
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.50 _ o Clean wing
[] NACA 0012

• <> NASA SC(2)-0012

.75 _ a Compression ii--
Hybrid

1.00
0 .2 .4 .6 .8 1.0

x/c

(a) _ = 0.310.

Figure 15. Comparison of static pressure coefficients on wing lower surface of various configurations for
Moc = 0.74 and CL _ 0.55 with pylons installed at r] -- 0.340.
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0 .2 .4

Clean wing
NACA 0012

NASA SC(2)-0012

Compression
Hybrid

.6 .8

x/c

(b) rl = 0.375.

Figure 15. Concluded.
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-1.00

c.

-.75

-.50

-.25

0

.25

.5O

.75

1.00

i

I

q

r _

o Clean wing
[] NACA 0012

• 0 NASA SC(2)-0012
ia Compression __

[ _ Hybrid ,'

0 .2 .4 .6 .8 1.0

x/c

(a) 77= 0.310.

Figure 16. Comparison of static pressure coefficients on wing lower surface of various configurations for
M_ = 0.77 and CL _ 0.55 with pylons installed at _/= 0.340.
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.75

1.00
0

Clean wing
NACA 0012
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Compression
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(b) r/= 0.375.

Figure 16. Concluded.



-1.00
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-.50
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.25
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o Clean wing
[] NACA 0012

O NASA SC(2)-0012

A Compression

tx Hybrid

1.00
0 .2 .4 .6 .8 1.0

x/c

(a) 77= 0.310.

Figure 17. Comparison of static pressure coefficients on wing lower surface of various configurations for
Mcc = 0.80 and CL _ 0.55 with pylons installed at 77= 0.340.
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Figure 17. Concluded.
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CL
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,6 • ''

.4

o Clean wing

[] NACA 0012

0 __ O NASA SC(2)-0012
& Compression
t_ Hybrid

-.2
-4 -2 0 2 4

a, deg

Figure 22. Comparison of lift charactcristics for clean wing and for pylons installed at 77 -- 0.400 with
Mcc = 0.77.

.6O

CL .55

.50

o Clean wing
[] NACA 0012

O NASA SC(2)-0012

A Compression

tx Hybrid

........ ! ......................

•5 .6 .7 .8 .9 1.0 1.1 1.2 1.3

a, deg

Figure 23. Comparison of lift characteristics for clean wing and for pylons installed at r/= 0.400 with
Moc = 0.77. Detail near CL = 0.55.
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-1.00
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% 0
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o Clean wing
[] NACA 0012

(> NASA SC(2)-0012

A Compression

t_ Hybrid

0 .2 .4 .6 .8 1.0

xlc

(a) V --- 0.375.

Figure 28. Comparison of static pressure coefficients on wing lower surface of various configurations for
M_ = 0.50 and CL _ 0.55 with pylons installed at 77= 0.400.
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Figure 28. Concluded.
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Figure 29. Comparison of static pressure coefficients on wing lower surface of various configurations for
M_c = 0.74 and C L _ 0.55 with pylons installed at 7} = 0.400.
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(b) T/= 0.428.

Figure 29. Concluded.
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Figurc 30. Comparison of static pressure coefficients on wing lower surface of various configurations for
5I_c = 0.77 and CL _ 0.55 with pylons installed at 7] = 0.400.
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Figure 30. Concluded.
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Figure 31. Comparison of static pressure coefficients on wing lower surface of various configurations for
_I_ = 0.80 and CL _ 0.55 with pylons installed at _] = 0.400.
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Figure 31. Concluded.
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